Efficiency of clay--TiO2 nanocomposites on the photocatalytic elimination of a model hydrophobic air pollutant.

نویسندگان

  • Daria Kibanova
  • Javiera Cervini-Silva
  • Hugo Destaillats
چکیده

Clay-supported TiO2 photocatalysts can potentially improve the performance of air treatment technologies via enhanced adsorption and reactivity of target volatile organic compounds (VOCs). In this study, a benchtop photocatalytic flow reactor was used to evaluate the efficiency of hectorite-TiO2 and kaolinite-TiO2, two novel composite materials synthesized in our laboratory. Toluene, a model hydrophobic VOC and a common indoor air pollutant, was introduced in the air stream at realistic concentrations, and reacted under UVA (lamda(max) = 365 nm) or UVC (lamda(max) = 254 nm) irradiation. The UVC lamp generated secondary emission at 185 nm, leading to the formation of ozone and other short-lived reactive species. Performance of clay-Ti02 composites was compared with that of pure TiO2 (Degussa P25), and with UV irradiation in the absence of photocatalyst under identical conditions. Films of clay-TiO2 composites and of P25 were prepared by a dip-coating method on the surface of Raschig rings, which were placed inside the flow reactor. An upstream toluene concentration of approximately 170 ppbv was generated by diluting a constant flow of toluene vapor from a diffusion source with dry air, or with humid air at 10, 33, and 66% relative humidity (RH). Toluene concentrations were determined by collecting Tenax-TA sorbent tubes downstream of the reactor, with subsequent thermal desorption--GC/MS analysis. The fraction of toluene removed, %R, and the reaction rate, Tr, were calculated for each experimental condition from the concentrations measured with and without UV irradiation. Use of UVC light (UV/TiO2/O3) led to overall higher reactivity, which can be partially attributed to the contribution of gas phase reactions by short-lived radical species. When the reaction rate was normalized to the light irradiance, Tr/Ilamda,the UV/TiO2 reaction under UVA irradiation was more efficient for samples with a higher content of TiO2 (P25 and Hecto-TiO2), but notfor Kao-TiO2. In all cases, reaction rates peaked at 10% RH, with Tr values between 10 and 50% higherthan those measured under dry air. However, a net inhibition was observed as RH increased to 33% and 66%, indicating that water molecules competed effectively with toluene for reactive surface sites and limited the overall photocatalytic conversion. Compared to P25, inhibition by coadsorbed water was less significant for Kao-TiO2 samples, but was more dramatic for Hecto-TiO2 due to the high water uptake capacity of hectorite.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of the Type of Ultraviolet on the Photocatalytic Removal of Xylene as a Pollutant in the Air Using TiO2 Nanoparticles Fixed on the Activated Carbon

Background and Objective: Currently, photocatalysts have become a major focus of research in physics, chemistry, and surface engineering. It is hoped that this science help to solve various environmental problems.  This study investigated the effect of ultraviolet lamp type on the removal efficiency of xylene utilizing the fixation of TiO2 nanoparticles on the activated carbon absorber and pass...

متن کامل

Photo catalytic removal of Toluene vapor from air in the Adsorption-Photo catalytic bed

Background and aims: Clean air is one of the most important components of health and sustainable development. Every person breathes about 10 kg of air per day and if it contains pollutants, it will have a serious impact on their health. Indoor air quality (IAQ) is one of the major health issues that have been addressed in recent years with changes in lifestyle patterns. Usually, due to the incr...

متن کامل

Reduced Graphene Oxide-TiO2 Nanocomposite Facilitated Visible Light Photodegradation of Gaseous Toluene

The photocatalytic degradation of gaseous toluene was investigated on TiO2 nanoparticles coated on reduced graphene oxide. Reduced graphene oxideTiO2 composite (RGO-TiO2) was synthesized via two step processes. The prepared RGO-TiO2 composite was characterized using SEM, XRD, and UV-visible spectra. A significant increase in light absorption to visible light was observed by RGO-TiO2 compared wi...

متن کامل

Photocatalytic decolorization of methyl orange dye using nano-photocatalysts

Environmental contamination, which is growing around the world, is a serious problem can not to be neglected. Among all contaminations, water pollution is a major problem. Azo dyes are one of the largest groups of pollutants found in the drinking water, coming from, and the food and textile industries. TiO2/Fe3O4 and TiO2/Fe2O3 nanocomposites with various ratios were synthesized by an ultrasoni...

متن کامل

Formic Acid Decomposition Using Synthesized Ag/TiO2 Nanocomposite in Ethanol-Water Media Under Illumination of Near UV Light

The effect of ethanol-water media on the synthesis of Ag/TiO2 nanocomposite was investigated with 0.05, 0.1 and 0.5 (wt.%) of Ag content. Ethanol was used as hole-scavenger enhancing the photodecomposition of Ag+ ions under illumination of near-UV light. The nanocomposites were further calcined to 300˚C and 400˚C under controlled atmosphere. The synthesized nanocomposites were tested for photoc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Environmental science & technology

دوره 43 5  شماره 

صفحات  -

تاریخ انتشار 2009